12 research outputs found

    Functional properties of hippocampal circuitry

    Get PDF
    Programa de Doctorado en NeurocienciasEl aprendizaje es el mecanismo mediante el cual el sistema nervioso se adapta a los cambios en las condiciones ambientales y sociales mediante la generación de nuevos comportamientos y/o actividades mentales. Estas habilidades motoras y cognitivas adquiridas se almacenan en diversas formas de memoria (declarativas, procedimentales, etc.) en función del tipo de aprendizaje adquirido. Los aprendizajes más frecuentemente abordados de forma experimental se suelen clasificar en no asociativos (como la habituación y la sensibilización) y asociativos (principalmente los condicionamientos clásico e instrumental). La participación de las estructuras nerviosas depende del tipo de aprendizaje y memoria que se considere. Uno de los modelos experimentales más utilizados en el estudio de los mecanismos neuronales que subyacen al aprendizaje asociativo es el condicionamiento clásico del reflejo corneal, el cual se ha estudiado en muy diversas especies de mamíferos, incluida la especie humana. El condicionamiento clásico del reflejo corneal se induce habitualmente mediante la presentación de un estímulo neutro (el estímulo incondicionado) incapaz de inducir per se una respuesta palpebral (por ejemplo, un tono de una determinada frecuencia) que se sigue de un soplo de aire aplicado a la córnea (el estímulo incondicionado) que sí es capaz de inducir una respuesta refleja palpebral. La presentación conjunta y repetida de ambos estímulos termina por producir la aparición de una respuesta condicionada cada vez que se presenta el estímulo condicionado (esto es, el tono). Existen dos paradigmas básicos de condicionamiento clásico o pavloviano: el paradigma de demora y el paradigma de traza. En el primer caso, el estímulo condicionado está presente hasta que se aplica el estímulo incondicionado y ambos terminan de forma simultánea. En el segundo caso, el estímulo condicionado termina antes de la presentación del estímulo incondicionado por lo que existe un intervalo de tiempo (la traza) separando ambos estímulos. Es tradicional asumir que ambos tipos de condicionamiento se generan en estructuras cerebrales diferente, el de demora en el cerebelo y el de traza en el hipocampo. Sin embargo estudios previos de nuestro grupo han mostrado que ambas estructuras participan en ambos paradigmas de condicionamiento, así como otras muchas como las cortezas sensorial, motora y prefrontal, determinados núcleos talámicos y otras estructuras subcorticales como el complejo amigdalino y el núcleo rojo. En la propuesta de Tesis Doctoral se estudiarán los cambios funcionales que ocurren en seis sinapsis diferentes del circuito intrínseco del hipocampo y de las vías aferentes al mismo durante el condicionamiento de traza en el conejo despierto. Los animales experimentales se ssometerán a condicionamientos de demora y de traza, pero también se estudiará el efecto sobre dichas sinapsis hipocampales del contexto en el que se sitúa al animal durante la prueba de aprendizaje, así como los cambios que producen la presentación no emparejada de los estímulos condicionado e incondicionado (es decir, durante un pseudocondicionamiento). En una segunda serie experimental se estudiará el efecto sobre este tipo de aprendizaje asociativo de la desconexión funcional transitoria del giro dentado. Esta desconexión funcional transitoria se realizará mediante la inyección local controlada de un adenovirus portador del ADN necesario para la síntesis controlada del fragmento C de la toxina tetánica. La síntesis de esta neurotoxina se activará mediante la inyección de doxiciclina. La expresión del fragmento C de la toxina tetánica en las neuronas del giro dentado produjo su desconexión funcional de sus neuronas blanco, esto es, de las células piramidales de CA3. Con este modelo experimental se espera demostrar que la expresión de respuestas palpebrales condicionadas en conejos disminuye significativamente o, incluso, desaparece durante el periodo en que existe una desconexión funcional entre el giro dentado y las neuronas piramidales de CA3. También se estudiará si las memorias desaparecidas durante el periodo de desconexión funcional reaparecen en el momento en que termine la expresión de la toxina tetánica en las neuronas del giro dentado. De confirmarse estos resultados, se podría sugerir que tal vez las memorias asociadas a este tipo de aprendizaje asociativo no se almacenan, como se ha supuesto hasta el momento presente, en la ultraestructura y composición molecular de los contactos sinápticos dentro del circuito intrínseco del hipocampo.Universidad Pablo de Olavide. Departamento de Fisiología, Anatomía y Biología Celula

    Pre- and postsynaptic N-methyl-D-aspartate receptors are required for sequential printing of fear memory engrams

    Get PDF
    The organization of fear memory involves the participation of multiple brain regions. However, it is largely unknown how fear memory is formed, which circuit pathways are used for "printing" memory engrams across brain regions, and the role of identified brain circuits in memory retrieval. With advanced genetic methods, we combinatorially blocked presynaptic output and manipulated N-methyl-D-aspartate receptor (NMDAR) in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) before and after cued fear conditioning. Further, we tagged fear-activated neurons during associative learning for optogenetic memory recall. We found that presynaptic mPFC and postsynaptic BLA NMDARs are required for fear memory formation, but not expression. Our results provide strong evidence that NMDAR-dependent synaptic plasticity drives multi-trace systems consolidation for the sequential printing of fear memory engrams from BLA to mPFC and, subsequently, to the other regions, for flexible memory retrieval

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Immediate and after effects of transcranial direct-current stimulation in the mouse primary somatosensory cortex

    No full text
    Transcranial direct-current stimulation (tDCS) is a non-invasive brain stimulation technique consisting in the application of weak electric currents on the scalp. Although previous studies have demonstrated the clinical value of tDCS for modulating sensory, motor, and cognitive functions, there are still huge gaps in the knowledge of the underlying physiological mechanisms. To define the immediate impact as well as the after effects of tDCS on sensory processing, we first performed electrophysiological recordings in primary somatosensory cortex (S1) of alert mice during and after administration of S1-tDCS, and followed up with immunohistochemical analysis of the stimulated brain regions. During the application of cathodal and anodal transcranial currents we observed polarity-specific bidirectional changes in the N1 component of the sensory-evoked potentials (SEPs) and associated gamma oscillations. On the other hand, 20 min of cathodal stimulation produced significant after-effects including a decreased SEP amplitude for up to 30 min, a power reduction in the 20–80 Hz range and a decrease in gamma event related synchronization (ERS). In contrast, no significant changes in SEP amplitude or power analysis were observed after anodal stimulation except for a significant increase in gamma ERS after tDCS cessation. The polarity-specific differences of these after effects were corroborated by immunohistochemical analysis, which revealed an unbalance of GAD 65–67 immunoreactivity between the stimulated versus non-stimulated S1 region only after cathodal tDCS. These results highlight the differences between immediate and after effects of tDCS, as well as the asymmetric after effects induced by anodal and cathodal stimulation.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Gauchos, Ranchers, and State Autonomy in Uruguay, 1811–1890

    No full text

    Conclusions

    No full text

    Two Alternative Paths of State Making

    No full text

    Notes

    No full text
    corecore